国标、美标、欧标电缆中的耐温等级有何不同?现在就让我司专业的工作人员带您详细了解一下!在电线电缆的设计、选材、生产、销售过程中,往往碰到很多温度参数,如90℃、105℃、125℃、150℃等。这些参数在行业中的通俗名称都叫耐温等级参数,那这些参数是怎么来的呢?同是90℃的耐温等级的材料,为什么老化温度不一样呢?老化温度和耐温等级是什么关系?绝缘允许的导体长期最高工作温度是怎么定义的?什么是温度指数?什么是材料的额定温度?硅烷交联料能满足125℃的耐温等级吗?
要回答上述问题,首先要了解标准体系,因为不同的标准体系对耐温等级的定义是不同的。我们常见的标准体系主要包括UL标准,EN/IEC标准、国标与行标等。
UL标准
UL标准中,常见的耐温等级是60℃、70℃、80℃、90℃、105℃、125℃和150℃。这些耐温等级是怎么来呢?是导体的长期工作温度吗?实际上,这些所谓的耐温等级,在UL标准中称作额定温度(rating temperature)。它并不是导体的长期工作温度。
额定工作温度
UL标准中额定温度的确认是按照公式1.1来确定的(参见UL 2556-2007中4.3章材料长期老化部分)。具体过程是先假定材料的一个耐温等级,如105℃,然后按公式1.1计算出烘箱的测试温度112℃,分别在这样的测试温度下将样品放置90天、120天和150天,得到样品的伸率变化率和老化天数的数据,然后再通过最小二乘法推算出老化天数和断裂伸长率的线性关系,进而依据此线性关系推算在此烘箱温度(112℃)下老化300天时的样品断裂伸长率,如果断裂伸长率的变化率小于50%,则认为此材料可以达到这个假定的额定温度,如果断裂伸长率的变化率大于50%,则认为此材料的额定温度不能达到假定的额定温度,需要重新假定一个额定温度,继续上述试验。
由此可见,在UL标准体系中如果采用反推的方法可以这样认为:某个材料在某温度A℃下老化300天,其伸率变化率不超过50%,再将温度A减去5.463,然后再除以1.02,得到温度B℃,即可认定此材料可以达到温度B℃的额定温度。这一额定温度,绝不是绝缘层允许的导体的长期最高工作温度。因为长期最高工作温度中的“长期”实际上应该是电缆在此工作温度下的寿命,至少要以年为单位计算,如光伏电缆标准EN50618中,电缆的寿命设计为25年,UL标准中的额定温度一般会比导体的长期最高工作温度高。
短期老化温度
材料的短期老化温度,即我们平常在标准中最常见的7天、10天等,如105℃的材料,老化条件为136℃×7天。那这和额定温度是什么关系呢?在UL标准中,短期老化的温度是靠材料的长期使用经验获得的,但也总结了一些方法来确认。如在UL2556-2007标准4.3.5.6章及附录D中这样确定一个材料的短期老化温度。首先按照表1-1选择一个额定温度、老化温度和老化时间。如果按照上述条件测试的材料的老化后的伸率变化率大于50%,则认定为此材料可以按照此条件来确定老化温度,如果伸率变化率大于50%,则材料的额定温度和短期老化温度要下降一个等级。
除此之外,在UL758-2010的第14章中也总结了简单的公式来确定短期老化温度。如式1.2
EN/IEC标准
在EN/IEC标准中,很少像UL标准中那样看到额定温度(rating temperature),取而代之的是导体长期工作温度(operation temperature)或者温度指数。那么这两个温度有什么区别呢?
实际上,在EN/IEC标准体系中,对电缆的耐温等级的评价主要是按照EN 60216或IEC 60216来评价的。此标准主要是评价绝缘材料的热寿命。其评价方法是将材料在不同温度下进行老化试验,以断裂伸长率的变化率为50%作为老化的终点,得出材料在不同温度下的老化天数。然后通过线性回归的方式将老化天数和老化温度做线性相关处理,得出一个线性关系曲线。然后根据电缆的寿命确定最高工作温度,或者根据长期工作温度,确定线缆的寿命。而温度指数,就是指绝缘材料在热老化20000H后,断裂伸长率的变化率为50%时,所对应的温度。以光伏电缆标准EN 50618:2014为例,其电缆的设计寿命为25年,长期工作温度为90℃,而温度指数则是120℃。绝缘材料的短期老化温度,也是以上述线性关系推导出来的。所以,EN 50618:2014中绝缘材料的老化温度为150℃。这一老化温度和UL标准系列中额定温度为125℃的材料的老化温度158℃非常接近。
通过上述分析不难看出,同样的导体的长期工作温度,由于电缆的设计寿命不同,可能其要求的老化温度并不一样。在同样的长期工作温度下,电缆设计寿命越短,绝缘材料的短期老化温度就可以要求的越低。例如在IEC 60502-1:2004中要求的XLPE绝缘料的长期最高工作